Bias-Stress Instability in GaN Field-Effect Transistors

Jesús A. del Alamo and Alex Guo Microsystems Technology Laboratories Massachusetts Institute of Technology

MRS Spring Meeting

Phoenix, AZ, April 2-6, 2018

Acknowledgements:

- S. Warnock (MIT Lincoln Lab.), J. Franco (IMEC)
- Sponsors: MIT-MTL GaN Energy Initiative, NDSEG Fellowship

Application space for future power electronics

Important role for GaN power electronics in future

Favored structure: GaN MIS-HEMT

• MIS-HEMT: Metal-Insulator-Semiconductor High Electron Mobility Transistor

- High-mobility 2DEG at AlGaN/GaN interface
- Dielectric to suppress gate leakage current and increase gate swing
- On Si for low cost

Main concern with GaN MIS-HEMTs: reliability and stability

- Si substrate \rightarrow defects in GaN
- Multiple interfaces, many trapping sites

• Uncertain electric field distribution across gate stack

Bias-Temperature Instability (BTI)

Device stability during operation: key concern, particularly V_T

Lagger, IEDM 2012

Zhang, SST 2014

Winzer, PSSa 2016

BTI in GaN MOSFETs

Simpler than MIS-HEMTs: single GaN/oxide interface

- Industrial prototype devices
- Gate dielectric: SiO₂/Al₂O₃ (EOT=40 nm)

Guo, IRPS 2015 Guo, IRPS 2016 Guo, TED 2017

Experimental methodology

Constant-V_{GS}, stress-interrupt experiments at RT:

- 1. Device initialization through thermal detrapping step Minor impact: $\Delta V_T < 20 \text{ mV}$, $\Delta S < 30 \text{ mV/dec}$
- 2. Stress and characterization: measure V_T, peak g_m, S at V_{DS}=0.1 V After 50 characterization runs: $\Delta V_T < 10$ mV, $\Delta g_m < 0.02$ mS/mm, $\Delta S < 15$ mV/dec
- 3. Recovery phase with terminals grounded and periodic characterization
- 4. Final thermal detrapping

Threshold voltage evolution

• PBTI: $V_{GS,stress} > 0 \rightarrow \Delta V_T > 0$

Guo, TED 2017

- NBTI: $V_{GS,stress} < 0 \rightarrow \Delta V_T < 0$
- $|\Delta V_T|$ increases with stress voltage and time
- Fully recoverable → no defect generation

Transconductance evolution

- PBTI: $V_{GS,stress} > 0 \rightarrow g_{m,max} \downarrow$
- NBTI: $V_{GS,stress} < 0 \rightarrow g_{m,max} \uparrow$
- $|\Delta g_m|$ increases with stress voltage and time
- Fully recoverable → no defect generation

Guo, TED 2017

Subthreshold swing evolution

Guo, TED 2017

- PBTI: $V_{GS,stress} > 0 \rightarrow S$ unchanged
- NBTI: $V_{GS,stress} < 0 \rightarrow S$ unchanged
- No interface state generation

Correlation between ΔV_T and Δg_m

- Good correlation between PBTI and NBTI during stress and recovery
- One physical mechanism, fully reversible

Functional dependence of V_T

V_T well described by *power-law function*:

Consistent with electron trapping/detrapping in oxide

Initial

PBTI in HfO₂/InGaAs system

Zafar, TDMR 2005

Al₂O₃/Si

What are these defects?

Prime suspect: O vacancies

Formation energy of O vacancies:

Al₂O₃/GaN band alignment:

Liu, APL 2010

Defect states in Al₂O₃ right above conduction band edge of GaN

What are these defects?

Prime suspect: O vacancies

Formation energy of O vacancies:

Al₂O₃/GaN band alignment:

Liu, APL 2010

Defect states smear into bands in amorphous material

How to mitigate?

Introduce SiON interfacial layer Cartier, IEDM 2011

Introduce SiON interfacial layer Cartier, IEDM 2011

Reduce high-k thickness Cartier, IEDM 2011

Franco, IRPS 2017

Introduce SiON interfacial layer Cartier, IEDM 2011

Reduce high-k thickness Cartier, IEDM 2011

Introduce SiON interfacial layer Cartier, IEDM 2011

Reduce high-k thickness Cartier, IEDM 2011

LaSiO interlayer Franco, IRPS 2017

Introduce SiON interfacial layer Cartier, IEDM 2011

Reduce high-k thickness Cartier, IEDM 2011

LaSiO interlayer Franco, IRPS 2017

10⁻¹ T_{PHY} HfO, 10⁻² T_{PHY} - 4Å HfO₃ PBTI Lifetime (a.u) 10⁻³ **10**⁻⁴ 10⁻⁵ 10⁻⁶ 10⁻⁷ 10⁻⁸ 0.01 100 0.1 10 Jg @ Arb Bias (A/cm²)

> Reduce I_G Krishnan, IRPS 2012

NBTI under harsher stress

High-voltage and high-temperature stress:

Guo, IRPS 2016

- Three regimes: Negative $\Delta V_T \rightarrow \text{positive } \Delta V_T \rightarrow \text{negative } \Delta V_T$
- Permanent negative ΔV_T after final thermal detrapping

NBTI under harsher stress

High-voltage and high-temperature stress:

• Three regimes: Negative $\Delta V_T \rightarrow \text{positive } \Delta V_T \rightarrow \text{negative } \Delta V_T$

• Permanent negative ΔV_T after final thermal detrapping

NBTI under harsher stress

High-voltage and high-temperature stress:

- Three regimes: Negative $\Delta V_T \rightarrow \text{positive } \Delta V_T \rightarrow \text{negative } \Delta V_T$
- Permanent negative ΔV_T after final thermal detrapping

Conclusions

- PBTI and NBTI (benign stress):
 - recoverable ΔV_{T} , Δg_{m} due to electron trapping/detrapping in preexisting oxide traps
 - Experimental observations well described by oxide trapping model
- Many avenues for mitigation \rightarrow study Si high-k/MOS literature
- New degradation physics under harsher stress (NBTI):
 - recoverable $\Delta V_T > 0$, ΔS due to electron trapping in substrate
 - non-recoverable $\Delta V_T < 0$, Δg_m , ΔS due to interface state formation